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A framework is developed to describe the two-point statistics of potential vorticity in ro-
tating and stratified turbulence as described by the Boussinesq equations. The Kármán-
Howarth equation for the dynamics of the two-point correlation function of potential vor-
ticity reveals the possibility of inertial-range dynamics in certain regimes in the Rossby,
Froude, Prandtl and Reynolds number parameters. For the case of large Rossby and
Froude numbers, and for the case of quasi-geostrophic dynamics, a linear scaling law with
2/3 prefactor is derived for the third-order mixed correlation between potential vorticity
and velocity, a result that is analogous to the Kolmogorov 4/5-law for the third-order
velocity structure function in turbulence theory.

1. Introduction
Potential vorticity q = ωa · ∇ρ, where ωa is the total vorticity and ρ is the density,

is a lagrangian invariant in rotating and stratified flows (Ertel (1942)). In the quasi-
geostrophic (QG) limit, in which the rotation and stratification effects are strong, the
potential vorticity evolution entirely determines the dynamics of quantities such as wind
speed, pressure and temperature fields (see for example, Hoskins et al. (1985); Rhines
(1986); Muller (1995); Haynes & McIntyre (1990)). Instead of studying q as a local
invariant in the traditional way, we here focus on the global statistical description of the
potential vorticity field in the style of the Kolmogorov 1941 theory for the statistical
description of the velocity field (Kolmogorov (1941)). We treat potential vorticity as a
statistical variable and consider the dynamics of its second-order moment in the triply
periodic or infinite domain. Thus the potential enstrophy Q = 〈q2〉/2 is the conserved
quantity of interest, where 〈·〉 denotes a suitable average (over ensembles or over the flow
domain).

Charney (1971) showed analytically that in the QG limit, conservation of energy and
potential enstrophy implies an inverse cascade of energy with energy spectrum scaling
as E(k) ∼ k−5/3 for the low wavenumbers, and a forward cascade of potential enstrophy
with E(k) ∼ k−3 at high wavenumbers. The strong constraint on the energy by Q is
analogous to the constraint on energy by enstrophy in 2D turbulence, resulting in the well-
known inverse cascade of energy, the forward cascade of enstrophy, and the corresponding
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scalings of the energy spectrum (Kraichnan (1971)). Herring et al. (1994) performed
moderate-resolution, spectral simulations of non-rotating, non-stratified turbulent flow
with a passive scalar θ, in which the Ertel potential vorticity q = ω ·∇θ with ω = ∇×u.
They studied the evolution of the potential enstrophy spectrum and demonstrated that
the transfer terms and the dissipation terms are not separated in wavenumber space.
They argued therefore, that an ‘inertial’ range of scales dominated by the flux of potential
enstrophy does not seem possible. The concept of an inertial range is a cornerstone of
the K41 theory of turbulence. Therefore it seemed futile, in a certain sense, to further
explore statistical approaches for potential vorticity dynamics.

To revisit the possibility of potential enstrophy intertial-range dynamics, we depart
from previous approaches in two ways. First, we confine ourselves to statistics in physical
space, and undertake a novel study of the evolution equations for the two-point spatial
correlation function of potential vorticity. Second, we examine, in addition to the QG
and non-rotating, non-stratified limits, four other regimes of interest in the rotation
and stratification parameters. Our approach has revealed that some of these regimes do
allow for the existence of an inertial range of potential enstrophy. Furthermore, when
we take a prescribed sequence of limits in the non-dimensional parameters and assume
local isotropy, then exact scaling laws for small-scale potential vorticity statistics emerge.
These new laws are analogous to existing laws that form the backbone of statistical
hydrodynamics in 3D non-rotating, non-stratified flows.

Following K41 turbulence theory, the von Kármán & Howarth (1938) equations for the
two-point correlation functions of velocity lead to the concept of an ‘inertial range’ of
scales dominated by net downscale flux of kinetic energy by nonlinear transfer with little
dissipative loss. The inertial-range concept was extended to the flux of passive scalar
variance by Yaglom (1949), and more recently to helicity flux by Chkhetiani (1996) (see
also L’vov et al. (1997); Gomez et al. (2000); Kurien (2003)). Under the assumptions
of statistical homogeneity and statistical isotropy of the small scales (local isotropy), all
these results take the form of exact scaling laws for the appropriate two-point third-order
correlations as follows:

〈(uL(x + r)− uL(x))3〉 = −4
5
εr; ε = 2ν〈∇u · ∇u〉 (1.1a)

〈(uL(x + r)− uL(x))(θ(x + r)− θ(x))2〉 = −4
3
εθr; εθ = 2α〈∇θ · ∇θ〉 (1.1b)

〈(uL(x + r)− uL(x))(uT (x + r)× uT (x))〉 =
2
15

hr2; h = 2ν〈∇u · ∇ω〉 (1.1c)

where r is the separation vector between the two measurement points; the velocity com-
ponent along r is called the longitudinal velocity uL = u·r̂ (we will also refer to its vector
representation uL = uLr̂); the component orthogonal to r is called the transverse veloc-
ity uT = u − uL r̂; θ is the passive scalar. The quantities ε, εθ and h are, respectively,
the mean dissipation rates of kinetic energy, passive scalar variance and helicity, and are
defined in terms of the viscosity ν and the thermal diffusion coefficient α. The kinetic
energy and passive scalar variance have positive-definite dissipation rates, while helicity
does not. The latter fact, however, does not in itself preclude a helicity inertial-range
(Chen et al. (2003); Kurien et al. (2004)). Equations (1.1) are three of the few exact,
nontrivial results known in the theory of statistical hydrodynamics. They are valuable
benchmarks for the study of high Reynolds number (Re) turbulence in both experiments
(Dhruva et al. (1997); Mydlarski & Warhaft (1998); Chambers & Antonia (1984)) and
numerical simulations (Sreenivasan et al. (1996); Gotoh et al. (2002); Taylor et al. (2003);
Kurien et al. (2004)).
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In section 2 we derive the Kármán-Howarth equation for the two-point correlation func-
tion of q starting from the Boussinesq equations for rotating and stratified flows. As noted
by Herring et al. (1994) for zero rotation and stratification, the flux and viscous-diffusion
terms are not necessarily separated in scale (or wavenumber). However, in statistically
homogeneous flow with Re → ∞ and fixed Prandtl number Pr, there exists the pos-
sibility of a range of scales wherein the viscous-diffusion rate is at least sub-dominant,
if not negligible, compared to the transfer rate. Assuming such a range of scales exists
at sufficiently high Re, we recover a balance between the divergence of the third-order
correlation between velocity and potential vorticity, and the production-dissipation rate
of potential enstrophy.

In section 3 we consider different limits of the Rossby (Ro) and Froude (Fr) numbers.
When rotation and stratification are small (Ro and Fr are large), we can reasonably
hypothesize local isotropy at small-enough scales. Then, an exact scaling law analogous
to Eqs. (1.1) arises for the third-order mixed correlation of u and q, with a prefactor
of 2/3. In the QG limit (Ro and Fr are small), the dependence on Ro and Fr may be
scaled out in a coordinate system with vertical stretching. For QG scales in the stretched
coordinates, we again assume local isotropy and deduce the same linear scaling law for
the mixed third-order correlation. In section 4, we tabulate several intermediate limits in
Ro and Fr; in some cases the correlation dynamics allow for a scale separation between
flux terms and viscous-diffusion terms, and hence the clear possibility for an inertial
range of scales dominated by potential enstrophy flux.

2. The Kármán-Howarth equation for potential vorticity q

The Boussinesq equations for rotating, stably stratified and incompressible flow are:

D

Dt
u + f ẑ × u +

1
ρ0
∇p +

ρ̃

ρ0
gẑ = ν∇2u, ∇ · u = 0,

D

Dt
ρ̃− bw = κ∇2ρ̃, (2.1)

where D/Dt = ∂t +(u ·∇), u is the velocity, w is its vertical component, p is an effective
pressure, f = 2Ω is the Coriolis parameter, Ω is the constant background rotation rate,
ν = µ/ρ0 is the kinematic viscosity and κ is the mass diffusivity coefficient. The total
density is ρ(x) = ρ0 − bz + ρ̃(x), where ρ0 is the constant background, b is also constant
and larger than zero for stable stratification, and ρ̃ is the density fluctuation such that
|ρ̃| � |bz| � ρ0.

We begin with the equation for q in rotating, stably stratified flow (Embid & Majda
(1998)) with periodic boundary conditions:

D q

Dt
=

D

Dt
(ωa · ∇ρ) = ν∇2ω · ∇ρ + κ∇2∇ρ̃ · ωa (2.2)

where ωa = ω + f ẑ is the absolute vorticity and ω = ∇×u is the relative vorticity. The
equation for the potential enstrophy Q = q2/2 is obtained by multiplying Eq. (2.2) by q.
The mean production-dissipation rate of Q over the domain is then given by:

∂

∂t
〈Q〉 = ν〈q ∇2ω · ∇ρ〉+ κ〈q ∇2∇ρ̃ · ωa〉 = −εQ (2.3)

where 〈·〉 denotes volume integration over the periodic domain. The quantity εQ is not
sign-definite, allowing for both production and dissipation, of potential enstrophy (see
also Herring et al. (1994)).
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2.1. Equation for the two-point correlation function of q in homogeneous flow

Following Embid & Majda (1998), one may define non-dimensional parameters:

Ro =
U

Lf
, Fr =

U

LN
, Γ =

BgL

U2
, P r =

ν

κ
, Λ = ΓFr2, Re =

UL

ν
(2.4)

where U , L, L/U are the characteristic velocity, length scale and time scale, and Bρ0 is
the characteristic scale for the density fluctuations (B is a dimensionless constant). The
buoyancy frequency N is given by N = (gb/ρ0)1/2. For the limiting cases Fr → 0 and
Fr → ∞, conservation of total energy (u · u + ρ̃2)/2 requires that Γ = 1/Fr, and thus
Λ = Fr. The latter equality is assumed throughout this work. Then the characteristic
velocity is given by U = Bg/N = B(ρ0g/b)1/2.

With the above definitions, the non-dimensional form of the equation for q as measured
at point x becomes

D

Dt
[ω · ∇ρ̃ + Ro−1 ∂ρ̃

∂z
− Fr−1ω3] = Re−1(Fr−1∇2ω3 −∇ρ̃ · ∇2ω)

− (RePr)−1(Ro−1∇2 ∂ρ̃

∂z
+ ω · ∇2∇ρ̃) (2.5)

where all variables are non-dimensional and ω3 is the vertical component of ω. From now
on we include in q only the contributions including the fluctuations ω and ρ̃

q = ω · ∇ρ̃ + Ro−1 ∂ρ̃

∂z
− Fr−1ω3, (2.6)

and we work entirely in the non-dimensional units.
One may write down an equation identical to (2.5) for q′, the potential vorticity at

point x′. Cross-multiplication and summing of the two resulting equations yields the
equation for the two-point quantity qq′ = q(x)q(x′):

d

dt
(qq′) =

d

dt

[
(ωi∂iρ̃)(ω′j∂j′ ρ̃′) + Ro−1{∂ρ̃

∂z
ω′i∂i′ ρ̃

′ +
∂ρ̃′

∂z′
ωi∂iρ̃} − Fr−1{ω3ω

′
i∂i′ ρ̃

′ + ω′3ωi∂iρ̃}

+ Ro−2 ∂ρ̃

∂z

∂ρ̃′

∂z′
−Ro−1Fr−1{ω3

∂ρ̃′

∂z′
+ ω′3

∂ρ̃

∂z
}+ Fr−2ω3ω

′
3

]
=

Re−1
[

(ωk∂kρ̃)(∂2
j′ω′i)(∂i′ ρ̃

′) + (ω′k∂k′ ρ̃′)(∂2
j ωi)(∂iρ̃)

+ Ro−1{∂ρ̃

∂z
(∂2

j′ω′i)(∂i′ ρ̃
′) +

∂ρ̃′

∂z′
(∂2

j ωi)(∂iρ̃)}

− Fr−1{ω3(∂2
j′ω′i)(∂i′ ρ̃

′) + ω′3(∂
2
j ωi)(∂iρ̃) + (ωi∂iρ̃)(∂2

j′ω′3) + (ω′i∂i′ ρ̃
′)(∂2

j ω3)}

− Ro−1Fr−1{∂ρ̃

∂z
∂2

j′ω′3 +
∂ρ̃′

∂z′
∂2

j ω3}+ Fr−2{ω3∂
2
j′ω′3 + ω′3∂

2
j ω3}

]
+ (2.7)

Re−1Pr−1
[

(ωk∂kρ̃)ω′i(∂i′∂
2
j′ ρ̃′) + (ω′k∂k′ ρ̃′)ωi(∂i∂

2
j ρ̃)

+ Ro−1{∂ρ̃

∂z
ω′i(∂i′∂

2
j′ ρ̃′) +

∂ρ̃′

∂z′
ωi(∂i∂

2
j ρ̃) + (ωi∂iρ̃)(∂2

j′
∂ρ̃′

∂z′
) + (ω′i∂i′ ρ̃

′)(∂2
j

∂ρ̃

∂z
)}

− Fr−1{ω3ω
′
i(∂i′∂

2
j′ ρ̃′) + ω′3ωi(∂i∂

2
j ρ̃)}

+ Ro−2{∂ρ̃

∂z
∂2

j′
∂ρ̃′

∂z′
+

∂ρ̃′

∂z′
∂2

j

∂ρ̃

∂z
} −Ro−1Fr−1{ω3∂

2
j′

∂ρ̃′

∂z′
+ ω′3∂

2
j

∂ρ̃

∂z
}
]

where d(qq′)/dt is defined by d(qq′)/dt = ∂t(qq′) + q′ui∂iq + qu′i∂i′q
′. Here all primed

variables denote their values at x′ and ∂i′ denotes differentiation with respect to x′i.
Next one may express the equation in terms of the separation vector r between the
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points x and x′, and rewrite the equation in terms of the new independent variables
r = x′ − x and X = (x + x′)/2 (see for example Hill (2002)), where

∂i = −∂ri +
1
2
∂Xi ; ∂i′ = ∂ri +

1
2
∂Xi ; ∂2

i = ∂′2i = ∂2
ri

+
1
4
∂2

Xi
. (2.8)

The procedure to derive the equation for the two-point correlation function is familar
from, for example Frisch (1995); Hill (2002). One can perform a change of variables
and then ensemble average the equation assuming statistical homogeneity. Ensemble
averaging commutes with the derivative operations ∂ri

and ∂Xi
. Statistical homogeneity,

as in the case of periodic boundary conditions with constant N and f , implies that the
derivative operation ∂Xi acting on any statistic yields zero. The result is

∂ 〈q q′〉
∂t

− ∂ri
〈q q′(ui − u′i)〉 = Re−1∂ri

〈qρ′∂2
j′ω′i − q′ρ∂2

j ωi〉

+ (RePr)−1∂ri
〈qω′ai

∂2
j′ ρ̃′ − q′ωai

∂2
j ρ̃〉, (2.9)

where all factors of Ro and Fr are ‘hidden’ in the non-dimensional expressions for q and
q′ defined by Eq. (2.6), ρ = −Fr−1z + ρ̃ and ωa = Ro−1ẑ + ω. Relation (2.9) is the
non-dimensional Kármán-Howarth equation for the two-point, second-order correlation
function of q. It describes the dynamics of the two-point correlation of q in a statistically
homogeneous Boussinesq flow, and is the starting point to consider various limiting cases
as described below.

2.1.1. Non-diffusive small-scale limit in homogeneous flow

For finite Re and Pr, the viscous-diffusion terms on the right-hand side of Eq. (2.9)
may not, in general, act only at scales much smaller than the non-linear (transfer) terms
on the left-hand side. Furthermore, each individual term on the right-hand side is not
sign-definite, and thus allows for both production and dissipation of 〈q q′〉 at a given
scale. The latter is reminiscent of the sign-indefiniteness of the dissipation rate of helicity
and helical velocity statistics; despite this, it has recently been shown that an inertial
range of helicity can exist with an exact scaling law recovered theoretically by Chkhetiani
(1996) (see also L’vov et al. (1997); Gomez et al. (2000); Kurien (2003)), as well as in
simulations by Kurien et al. (2004).

We proceed with a particular order of limits, first Re → ∞ with Pr fixed, followed
by r → 0. The expectation is that this procedure will access a range of (sufficiently
small) scales such that the effect of the diffusion is sub-leading compared to the transfer
for a given scale. One may then derive the leading-order balance between the flux and
production-dissipation terms. In the first limit, the right-hand side of Eq. (2.9) becomes
negligible for given r. Then, in the limit as r → 0, ∂t〈qq′〉 → 2∂t〈Q〉 = −2εQ and hence
Eq. (2.9) reduces to

∇r · 〈q q′(u− u′)〉 = −2εQ. (2.10)

Implicit in this step is the assumption that the production-dissipation rate εQ remains
finite in the non-diffusive limit Re →∞, Pr fixed. This is analogous to the Kolmogorov
(1941) hypothesis that kinetic energy dissipation rate remains finite in the inviscid limit.
Similar assumptions were used for the rates of dissipation of passive scalar variance
and helicity to derive Eqs. (1.1). Equation (2.10) is analogous to the result for third-
order velocity structure functions in statistically homogeneous, high Reynolds number
turbulence in the small scale limit (Frisch (1995)).
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3. Limiting cases in the rotation and stratification parameters
Our starting point is the Kármán-Howarth equation for homogeneous flows Eq. (2.9),

upon which we impose limits in Ro and Fr using Eq. (2.6) (see also Eq. (2.7)). In the
large Ro, large Fr limit, we derive an exact balance for the isotropic small scales between
εQ and the mixed third-order correlation of u and q. The scaling law thus derived, which
we will call the ‘2/3-law’, is analogous to the established scaling laws for kinetic energy,
passive scalar variance and helicity in Eqs. (1.1). The same 2/3-law is shown to hold for
the QG limit in a stretched coordinate system, presumably in a range of larger scales for
which vertical stretching leads to local isotropy.

3.1. Rotation and stratification are small (large Ro, large Fr)

The equations for large Ro and large Fr should tend toward the equations for incom-
pressible, variable density 3D flow. Consider the following scalings:

Ro =
1
ε

N

f
, Fr =

1
ε
, Re > O(1), P r fixed as ε → 0. (3.1)

After the change of variables according to (2.8), ensemble averaging and assuming ho-
mogeneity, the leading-order O(1) balance of (2.9) is

∂ 〈q q′〉
∂t

− ∂ri〈q q′(ui − u′i)〉 = Re−1[∂ri〈q ρ̃′∇′2ω′i〉 − ∂ri〈q′ρ̃∇2ωi〉]

+ Re−1Pr−1[∂ri
〈q ω′i∇′2ρ̃′〉 − ∂ri

〈q′ωi∇2ρ̃〉], where q ∼ ω · ∇ρ̃. (3.2)

Note that, unlike in the equation for velocity correlations, the order of the derivative
with respect to r is the same for the flux and viscous-diffusion terms. Thus we cannot,
without further assumptions, expect an ‘inertial-range’ transfer dominated by the flux
of potential enstrophy in some range of scales. In this limit, the equations of motion are
identical to those investigated by Herring et al. (1994), that is, the density is a passive
scalar and the momentum obeys the Navier-Stokes equations.

3.1.1. Local isotropy

In the large Ro and large Fr limit, it is reasonable to further assume local isotropy
for sufficiently small scales, that is, invariance of the correlation tensors under arbitrary
rigid rotations. Invariance with rotation by π radians about each of the coordinate axes
yields the constraint that only the longitudinal components of the tensor correlations are
non-zero. Then Eq. (3.2) reduces to

∂ 〈q q′〉
∂t

−∇r · 〈q q′(uL − u′L)〉 = Re−1∇r · 〈qρ′∂2
j′ω′

L − q′ρ∂2
j ωL〉

+ (Re Pr)−1∇r · 〈qω′
aL∂2

j′ ρ̃′ − q′ωaL∂2
j ρ̃〉, (3.3)

where subscript L denotes the longitudinal component. Equation (3.3) is a Kármań-
Howarth equation for two-point potential vorticity statistics in 3D incompressible, vari-
able density, statistically homogeneous and locally isotropic flow. We may use the fol-
lowing isotropic forms for the scalar and tensor correlations in Eq. (3.3):

〈q q′〉 = 〈q(x)q(x + r)〉 = C(r) ; 〈q(x)q(x + r)(ui(x)− ui(x + r))〉 = F (r)
ri

r
;

〈qρ′∂2
j′ω′i − q′ρ∂2

j ωi〉 = G1(r)
ri

r
; 〈qω′ai

∂2
j′ ρ̃′ − q′ωai

∂2
j ρ̃〉 = G2(r)

ri

r
(3.4)
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where C(r), F (r), G1(r) and G2(r) are scalar functions of r. Substituting these isotropic
forms into Eq. (3.3) and using the identities

∂r

∂ri
=

ri

r
;

∂

∂ri
=

∂r

∂ri

∂

∂r
=

ri

r

∂

∂r
(3.5)

we find

∂ C(r)
∂t

− 1
r2

∂

∂r

(
r2F (r)

)
= Re−1 1

r2

∂

∂r

(
r2G1(r)

)
+ (Re Pr)−1 1

r2

∂

∂r

(
r2G2(r)

)
. (3.6)

Relation (3.6) is the the scalar form of the Kármán-Howarth equation for the second-
order moment 〈qq′〉 in locally isotropic flow.

3.1.2. Statistically steady state, non-diffusive and small-scale limit
The analogy to the Kolmogorov 4/5-law for longitudinal structure functions may be

recovered in the non-diffusive limit using the following steps. First, assume a statistically
steady state in time. Then, in order to observe the limit where the viscosity and mass
diffusion contributions are small, take the limit Re → ∞ with Pr constant, eliminating
the right-hand side of (3.6). Follow this with r → 0 to obtain:

∂

∂t
C(r)|r=0 +

∂

∂t

(∂C(r)
∂r

∣∣∣
r=0

r
)

+ . . . +
1
r2

∂

∂r
(r2F (r))

∣∣∣
r→0

= 0. (3.7)

The mean dissipation rate of the potential enstrophy is the leading order term of the
time derivative:

∂

∂t
(C(0)) =

∂

∂t
〈q2〉 = 2

∂

∂t
〈Q〉 = −2εQ (3.8)

where it is assumed that the higher-order contributions to the time derivative in Eq. (3.6)
vanish as r → 0 in the statistically steady state. This is analogous to the assumption
made to derive the Kármán-Howarth equation for helicity (Kurien (2003)). Next use
(3.7)-(3.8) in (3.6), multiply by r2 throughout, and integrate with respect to r to find

F (r) ∼ −2
3
εQr, r → 0. (3.9)

The constant of integration is zero assuming that the scalar function F (r) remains regular
as r → 0. Alternatively, we can write the ‘2/3-law’ for the third-order correlation of q
and velocity as:

〈q(x)q(x + r)(u(x)− u(x + r)) · r̂)〉 = −2
3
εQr (3.10)

where εQ is obtained from Eq. (2.3) in the large Ro, large Fr limit,

εQ = −(ν〈q ∇2ω · ∇ρ̃〉+ κ〈q ∇2∇ρ̃ · ω〉). (3.11)

The equation (3.10) is the potential enstrophy counterpart to the scaling laws presented
in Eq. (1.1). As for the helicity case, εQ is not sign definite. As we have discussed above,
this fact in itself does not exclude the possibility of an inertial range.

3.2. The quasi-geostrophic limit
The quasi-geostrophic (QG) limit is attained in the high-rotation, large-stratification
(low Ro, low Fr) limit corresponding to

Ro = ε
N

f
, Fr = ε , Re > O(1), P r fixed as ε → 0. (3.12)
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Case Ro Fr q viscous-diffusion terms

i
1

ε

N

f

1

ε
ω · ∇ρ̃ Re−1∂ri〈(qρ̃′∂2

j′ω′
i − q′ρ̃∂2

j ωi)〉

+(RePr)−1∂ri〈(qω′
i∂

2
j′ ρ̃′ − q′ωi∂

2
j ρ̃)〉

ii ε
N

f
ε ω3 −

f

N

∂ρ̃

∂z
Re−1∂2

rj
〈2(ω3ω

′
3)−

f

N
(
∂ρ̃

∂z
ω′

3 +
∂ρ̃′

∂z′
ω3)〉

+(RePr)−1∂2
rj
〈 f2

N2

∂ρ̃

∂z

∂ρ̃′

∂z′
− f

N
(ω3

∂ρ̃′

∂z′
+ ω′

3
∂ρ̃

∂z
)〉

iii ε O(1)
∂ρ̃

∂z
2(RePr)−1∂2

rj
〈qq′〉

iv O(1) ε ω3 2Re−1∂2
rj
〈qq′〉

v
1

ε
O(1) Fr−1ω3 + ωi∂iρ̃ Re−1∂ri〈(qρ′∂2

j′ω′
i − q′ρ∂2

j ωi)〉
+(RePr)−1∂ri〈(qω′

i∂
2
j′ ρ̃′ − q′ωi∂

2
j ρ̃)〉

vi O(1)
1

ε
Ro−1 ∂ρ̃

∂z
+ ωi∂iρ̃ Re−1∂ri〈(qρ̃′∂2

j′ω′
i − q′ρ̃∂2

j ωi)〉
+(RePr)−1∂ri〈(qω′

ai
∂2

j′ ρ̃′ − q′ωai∂
2
j ρ̃)〉

Table 1. The form of q and the viscous-diffusion terms of (2.9) in various cases.

After change of variables, ensemble averaging and using homogeneity, the leading order
O(1/ε2) terms from (2.7) are

∂ 〈q q′〉
∂t

− ∂ri〈q q′(ui − u′i)〉 = Re−1
(
2∂2

rj
〈ω3ω

′
3〉 −

f

N
{∂2

rj
〈∂ρ̃

∂z
ω′3〉+ ∂2

rj
〈∂ρ̃′

∂z′
ω3〉}

)
+Re−1Pr−1

( f2

N2
∂2

rj
〈∂ρ̃

∂z

∂ρ̃′

∂z′
〉− f

N
{∂2

rj
〈ω3

∂ρ̃′

∂z′
〉+∂2

rj
〈ω′3

∂ρ̃

∂z
〉}

)
, q ∼ ω3−

f

N

∂ρ̃

∂z
. (3.13)

In this limit, the viscous-diffusion terms on the right-hand side of (3.13) are all second-
order derivatives with respect to r. Therefore they can be considered localized at small
scales, allowing an inertial range in which viscous-diffusion contributions are separated in
scale from transfer contributions. To focus on QG scales rather than small scales, we scale
out the dependence on f and N by using a stretched z-coordinate, z∗ = (N/f)z (Charney
(1971)). Then the scaled q is given by q = ω3 − ∂ρ̃/∂z∗, and all z-derivatives (f/N)∂/∂z

in (3.13) become ∂/∂z∗. Such vertical stretching removes anisotropy in the QG scales;
one may imagine pancake-shaped eddies, stretched to become spherical eddies. Following
sections 3.1.1 and 3.1.2, one may next derive the Kármán-Howarth equation analogous
to Eq. (3.6), and then a scaling law for the third-order mixed correlation function in an
isotropic range of scales, identical to Eq. (3.10). However, the separation distance r is
measured in the stretched coordinates, and the mean dissipation rate for QG is given by

εQ = −
[
Re−1

〈∂ρ̃

∂z
∇2
∗ω3

〉
+ (RePr)−1

〈
ω3∇2

∗
∂ρ̃

∂z

〉]
, ∇2

∗ =
∂2

∂x2
+

∂2

∂y2
+

N2

f2

∂2

∂z2
∗
.

4. Summary and Discussion
Our results for various limits of Ro and Fr are summarized in Table 1. In cases (ii-iv),

an inertial range of scales dominated by flux of potential enstrophy may be realized at
finite Re because the viscous-diffusion terms are confined to small scales. For QG flow
with Ro, Fr → 0 (case ii) and Re → ∞, the 2/3-law describes locally isotropic flow
in a coordinate system with vertical stretching. In the remaining three cases (i, v and
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vi), the possibility of a potential-enstrophy inertial range at finite Re is not as clear
because the flux and viscous-diffusion contributions can in principle intermingle at all
scales. Nevertheless, the 2/3-law Eq. (3.10) is obtained for the Ro, Fr → ∞ case (i),
again for locally isotropic flow in the Re → ∞ limit. In the derivation of the 2/3-law
for both cases (i) and (ii), there is a prescribed sequence of limits: Re → ∞ with Pr
fixed, followed by the separation r → 0. In case (i), the 2/3-law is additional statistical
information describing 3D turbulent flow with a passive scalar ρ̃. A point of difference
from Eq. (1.1b) is that the 2/3-law for q contains information about the geometry and
structures of the flow; recall that ω evolves as a line element and ∇ρ̃ evolves as a surface
element, and thus that q evolves as a volume element (Ertel (1942)).

The 2/3-laws are derived assuming local isotropy for some range of scales: “sufficiently
small” scales for nearly isotropic flow with Ro, Fr → ∞; larger QG scales for which
vertical stretching removes anisotropy in the case of Ro, Fr → 0. It is important to note
that even if local isotropy is not strictly realized, there is always an isotropic component
of the flow that could obey the 2/3-law (see Taylor et al. (2003)). We expect the 2/3-
laws to become part of the theoretical foundation of rotating and stratified flows, and
a benchmark for high-Reynolds number physical and numerical experiments, just as
Eqs. (1.1) provide a foundation for isotropic turbulence research.

An eventual goal is to elucidate the connection between energy and potential enstrophy
in different parameter limits, as pioneered by Charney (1971) for QG dynamics. It is
instructive to write the conservation laws for energy and potential enstrophy:

∂

∂t
〈|v|2 + ρ̃2〉 = Re−1〈∇2|v|2〉+ (RePr)−1〈∇2ρ̃2〉,

∂〈Q〉
∂t

= Re−1((Fr−1〈q∇2ω3〉 − 〈q∇ρ̃ · ∇2ω〉)− Pr−1(Ro−1〈q∇2 ∂ρ̃

∂z
〉+ 〈q ω · ∇2∇ρ̃〉)),

where q = ω ·∇ρ̃+Ro−1∂ρ̃/∂z−Fr−1ω3. The energy conservation law does not depend
on either Ro or Fr, while the conservation law for potential enstrophy does (see also
Table 1). Thus potential enstrophy may constrain energy transfer among different scales
in cases other than the QG limit, an exciting possibility for future research.
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